230 research outputs found

    Distributed Cooperative Transmission with Unreliable and Untrustworthy Relay Channels

    Get PDF
    Cooperative transmission is an emerging wireless communication technique that improves wireless channel capacity through multiuser cooperation in the physical layer. It is expected to have a profound impact on network performance and design. However, cooperative transmission can be vulnerable to selfish behaviors and malicious attacks, especially in its current design. In this paper, we investigate two fundamental questions Does cooperative transmission provide new opportunities to malicious parties to undermine the network performance? Are there new ways to defend wireless networks through physical layer cooperation? Particularly, we study the security vulnerabilities of the traditional cooperative transmission schemes and show the performance degradation resulting from the misbehaviors of relay nodes. Then, we design a trust-assisted cooperative scheme that can detect attacks and has self-healing capability. The proposed scheme performs much better than the traditional schemes when there are malicious/selfish nodes or severe channel estimation errors. Finally, we investigate the advantage of cooperative transmission in terms of defending against jamming attacks. A reduction in link outage probability is achieved

    Cooperative Transmission for Underwater Acoustic Communications

    Full text link
    Underwater acoustic channels normally have low data rate, long propagation delay, severe multipath effect, and time varying fading. Cooperative transmission is a new wireless communication technique in which diversity gain is achieved by utilizing relay nodes as virtual antennae. In this paper, we investigate cooperative transmission techniques for underwater acoustic communications. First, we study the performance of several cooperative transmission schemes, originally designed for radio communications, in an underwater scenario. Second, by taking advantage of the low propagation speed of sound, we design a new wave cooperative transmission scheme. In this scheme, the relay nodes amplify the signal received from the source node, and then forward the signal immediately to the destination. The goal is to alter the multipath effect at the receiver. Third, we derive the performance upper bound for the proposed wave cooperative transmission scheme. The simulation results show that the proposed wave cooperative transmission has significant advantages over the traditional direct transmission and the existing cooperative transmission schemes originally designed for radio wireless networks. ©2008 IEEE

    A Survey of Security and Privacy Challenges in Cloud Computing: Solutions and Future Directions

    Get PDF
    While cloud computing is gaining popularity, diverse security and privacy issues are emerging that hinder the rapid adoption of this new computing paradigm. And the development of defensive solutions is lagging behind. To ensure a secure and trustworthy cloud environment it is essential to identify the limitations of existing solutions and envision directions for future research. In this paper, we have surveyed critical security and privacy challenges in cloud computing, categorized diverse existing solutions, compared their strengths and limitations, and envisioned future research directions

    Voting Systems with Trust Mechanisms in Cyberspace: Vulnerabilities and Defenses

    Get PDF
    With the popularity of voting systems in cyberspace, there is growing evidence that current voting systems can be manipulated by fake votes. This problem has attracted many researchers working on guarding voting systems in two areas: relieving the effect of dishonest votes by evaluating the trust of voters, and limiting the resources that can be used by attackers, such as the number of voters and the number of votes. In this paper, we argue that powering voting systems with trust and limiting attack resources are not enough. We present a novel attack named as Reputation Trap (RepTrap). Our case study and experiments show that this new attack needs much less resources to manipulate the voting systems and has a much higher success rate compared with existing attacks. We further identify the reasons behind this attack and propose two defense schemes accordingly. In the first scheme, we hide correlation knowledge from attackers to reduce their chance to affect the honest voters. In the second scheme, we introduce robustness-of-evidence, a new metric, in trust calculation to reduce their effect on honest voters. We conduct extensive experiments to validate our approach. The results show that our defense schemes not only can reduce the success rate of attacks but also significantly increase the amount of resources an adversary needs to launch a successful attack

    On Design and Implementation of Neural-Machine Interface for Artificial Legs

    Get PDF
    The quality-of-life of leg amputees can be improved dramatically by using a cyber-physical system (CPS) that controls artificial legs based on neural signals representing amputees\u27 intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system-a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user\u27s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a postprocessing scheme, was developed to identify the user\u27s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real-time testing. Real-time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs

    Toward a Noninvasive Automatic Seizure Control System in Rats With Transcranial Focal Stimulations via Tripolar Concentric Ring Electrodes

    Get PDF
    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback

    Glypican-3–Deficient Mice Exhibit Developmental Overgrowth and Some of the Abnormalities Typical of Simpson-Golabi-Behmel Syndrome

    Get PDF
    Glypicans are a family of heparan sulfate proteoglycans that are linked to the cell surface through a glycosyl–phosphatidylinositol anchor. One member of this family, glypican-3 (Gpc3), is mutated in patients with the Simpson-Golabi-Behmel syndrome (SGBS). These patients display pre- and postnatal overgrowth, and a varying range of dysmorphisms. The clinical features of SGBS are very similar to the more extensively studied Beckwith-Wiedemann syndrome (BWS). Since BWS has been associated with biallelic expression of insulin-like growth factor II (IGF-II), it has been proposed that GPC3 is a negative regulator of IGF-II. However, there is still no biochemical evidence indicating that GPC3 plays such a role

    Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells

    Get PDF
    Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical “beads-on-a-string” appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity

    Potential negative consequences of geoengineering on crop production: A study of Indian groundnut

    Get PDF
    Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN
    corecore